

G. Grieco¹ B. Stiles² F. Cossu³ M. Portabella³ A. Stoffelen⁴ A. Verhoef
⁴ J. Vogelzang⁴
8th May 2025

¹CNR-ISMAR, ²NASA-JPL, ³BEC-ICM, ⁴KNMI

- Dataset description
- Methodology
- Results
- Preliminary Conclusions
- Future plans

Dataset description

Buoy location

- Period: 2007
- Wind sources:
 - OSI-SAF 12.5 km (noise-reg)
 - ECWMF operational winds
 - JPL (4.1 v1.1)
 - NCEP winds
 - ECMWF-MARS buoy

Quality Control

• JPL:

- quality_indicator \leq 2:
 - likely significant error excluded
 - no winds retrieved due to quality control excluded
 - no data over liquid water in cell excluded
- OSI-SAF:
 - knmi_quality_control_fail = 0
 - variational_quality_control_fails = 0
- MARS buoys: Black-listed excluded

- Collocations within 60 km to the coast
- Triple collocation:
 - **buoy/OSI-SAF/ECMWF**: 24,059 (19,817, *d* ∈ [0,40) km)
 - **buoy/JPL/NCEP**: 23,252 (19,065, *d* ∈ [0,40) km)
- Triple collocation on intersection: 22,577 (18,703, $d \in [0, 40)$ km)
 - buoy/OSI-SAF/ECMWF
 - buoy/JPL/ECMWF
- Reference system: scatterometer
- $r^2 = 0$

Wind speed distribution

MLE vs U_1

Table 1: Intersection

Table 2: Intersection

	buoy	OSI-SAF	ECMWF
ϵ_u	1.70	0.79	1.36
ϵ_v	1.60	0.80	1.31

	buoy	JPL	ECMWF
ϵ_u	1.73	1.53	1.34
ϵ_{v}	1.59	1.25	1.33

- OSI-SAF and JPL winds are high-biased @ low-wind regimes
- This is particularly true close to the coast
- Any residual land-contamination?
- JPL winds seem noisier than OSI-SAF

- Segregate the analysis according to swath location: outer-sweet-nadir
- Analyze the dependency on wind direction w.r.t. the coast
- Remove biases from retrieved winds

Back-up slides

Errors. Units: ms⁻¹

Table 3: Intersection

	buoy	OSI-SAF	NCEP
ϵ_u	1.56	1.08	2.09
ϵ_v	1.54	0.93	1.98

Table 5: Original

Table 4: Intersection

	buoy	JPL	NCEP
ϵ_u	1.86	1.41	1.73
ϵ_v	1.73	1.09	1.77

Table 6: Original

	buoy	JPL	NCEP
ϵ_u	1.87	1.42	1.73
ϵ_v	1.75	1.12	1.78

	buoy	OSI-SAF	ECMWF
ϵ_u	1.71	0.81	1.36
ϵ_v	1.61	0.82	1.31

Sampling

IOVWST 8th May 2025